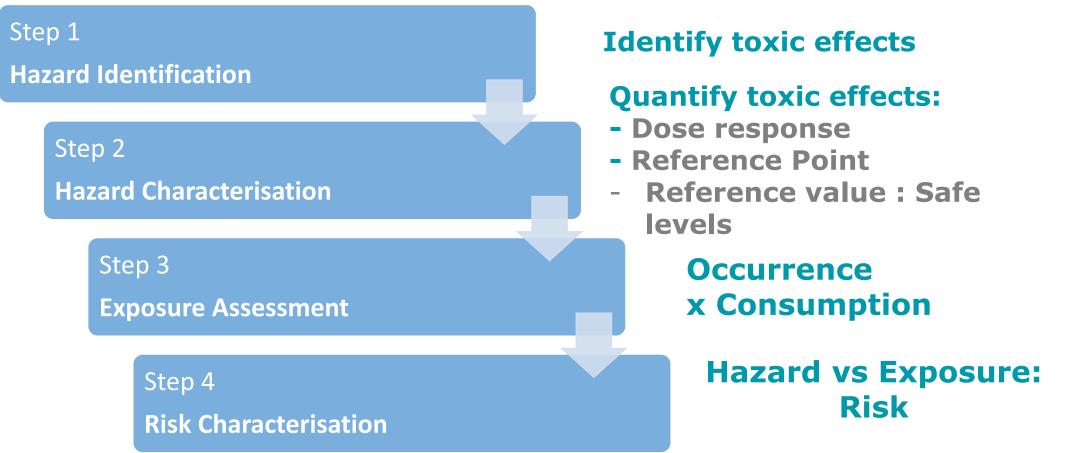
A Food and feed Safety Perspective for harmonised risk assessment of combined exposure to multiple chemicals in the human health, animal health and ecological areas

Jean Lou C M Dorne, EFSA, SCER Unit, Parma, Italy

VALUTAZIONE DEGLI EFFETTI COMBINATI DELLE MISCELE DI SOSTANZE CHIMICHE

Digital Workshop

25 giugno 2020



Four pillars of Chemical Risk Assessment

Risk assessment

- Fit for purpose
- Uses tiered approaches depending on data available, time and resources

The "Cocktail Effect"

Limoncello

90 a

Bargnolino

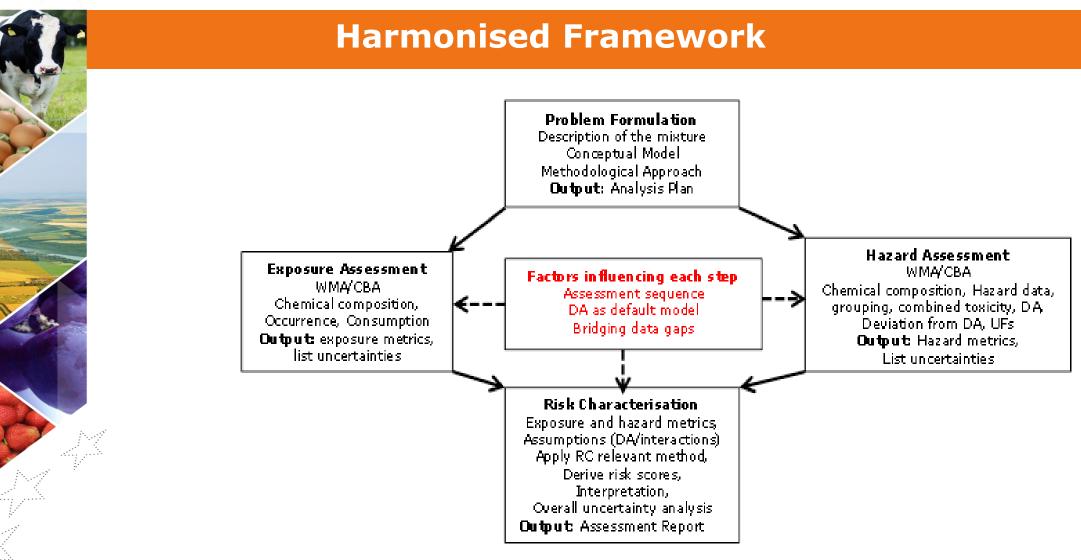
Headache

Nocino Hazardous mixture Be Careful With This One !

GUIDANCE

ADOPTED: 20 February 2019

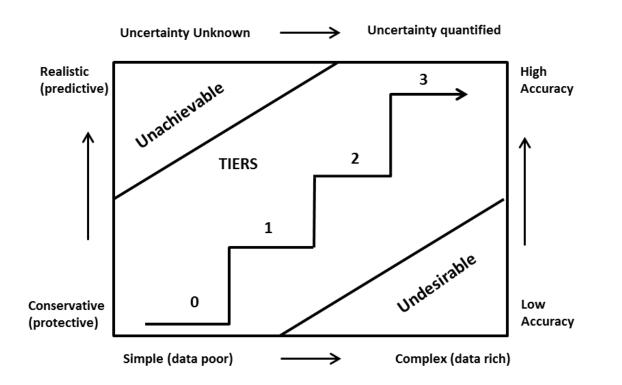
doi: 10.2903/j.efsa.2019.5634

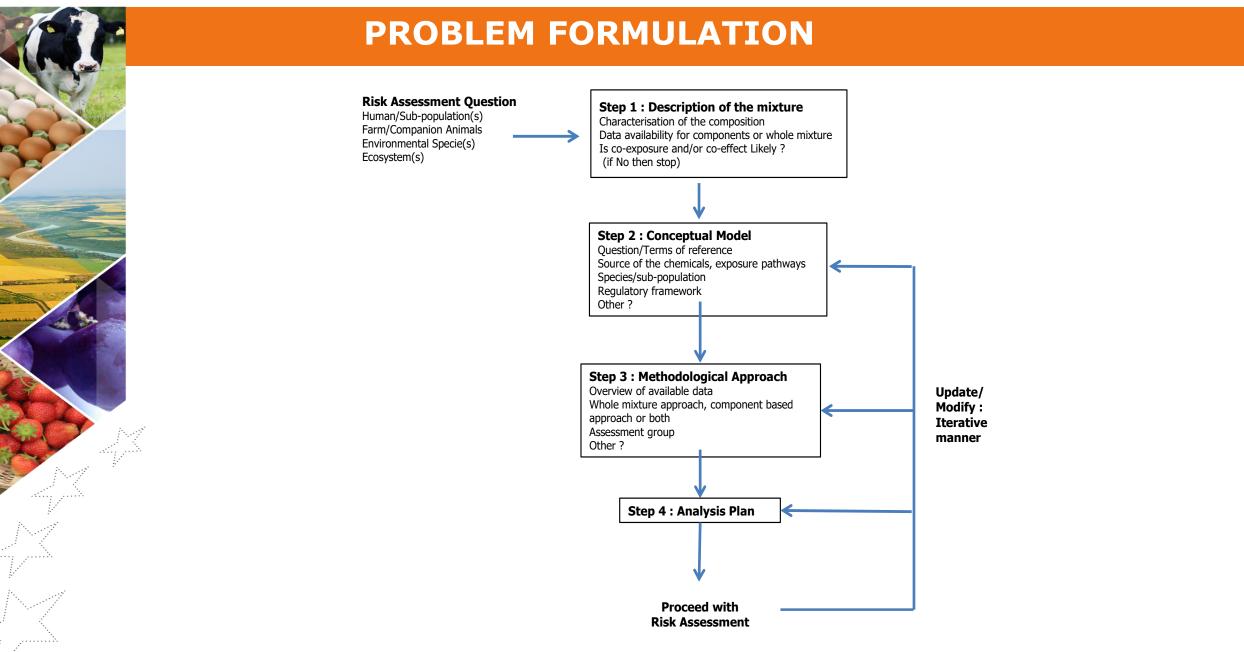

Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals

EFSA Scientific Committee, Simon John More, Vasileios Bampidis, Diane Benford, Susanne Hougaard Bennekou, Claude Bragard, Thorhallur Ingi Halldorsson, Antonio F Hernández-Jerez, Konstantinos Koutsoumanis, Hanspeter Naegeli, Josef R Schlatter, Vittorio Silano, Søren Saxmose Nielsen, Dieter Schrenk, Dominique Turck, Maged Younes, Emilio Benfenati, Laurence Castle, Nina Cedergreen, Anthony Hardy, Ryszard Laskowski, Jean Charles Leblanc, Andreas Kortenkamp, Ad Ragas, Leo Posthuma, Claus Svendsen, Roland Solecki, Emanuela Testai, Bruno Dujardin, George EN Kass, Paola Manini, Maryam Zare Jeddi, Jean-Lou CM Dorne and Christer Hogstrand

Content of Guidance

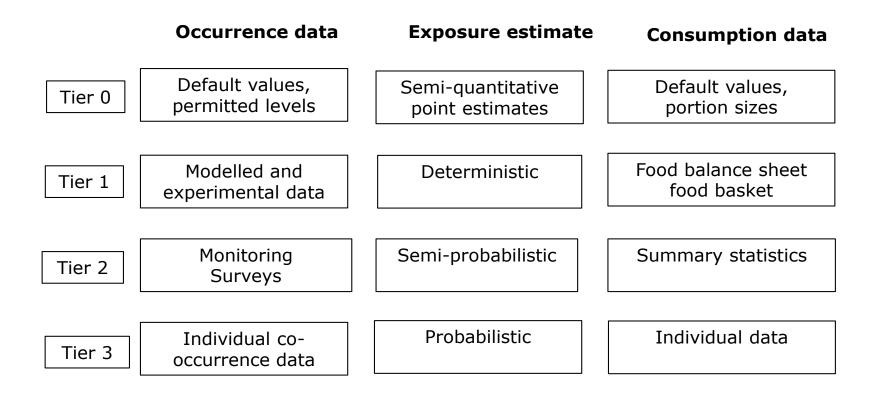
Chapter	General Considerations	Whole mixture	Component- based	Tiering Principles	Stepwise Guidance
Problem Formulation	×	×	1	1	✓
Exposure Assessment	~	×	1	1	1
Hazard Assessment	V	~	✓	✓	V
Risk Characterisation Uncertainty	V	V	✓	V	V
Reporting table		×	1	1	×
Case studies Humans (RA contaminants) Animals (RA essential oils) Bees (Hazard Synergy Pesticides)				~	•

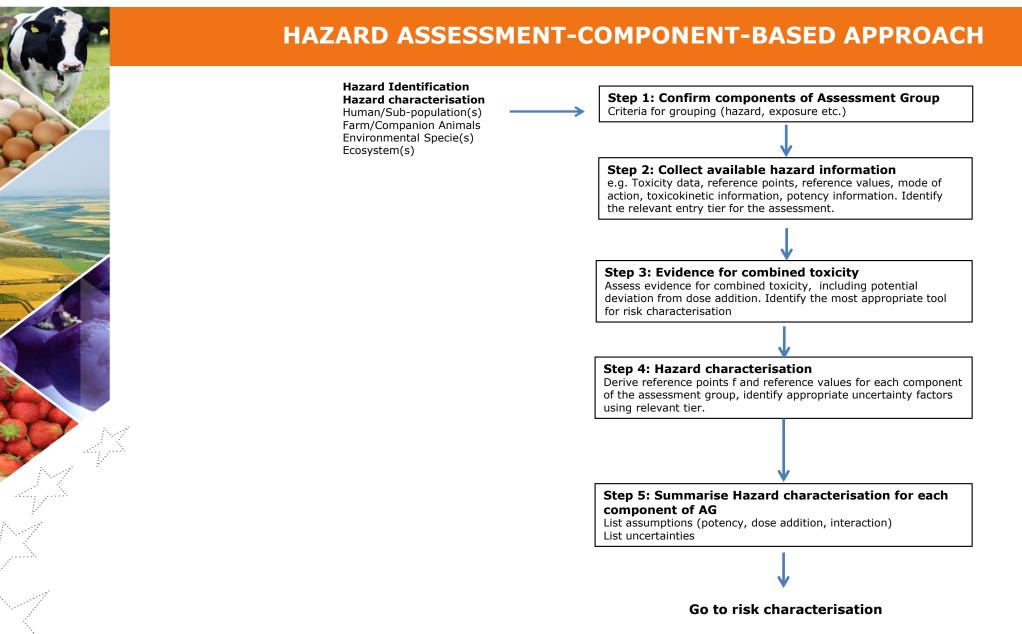




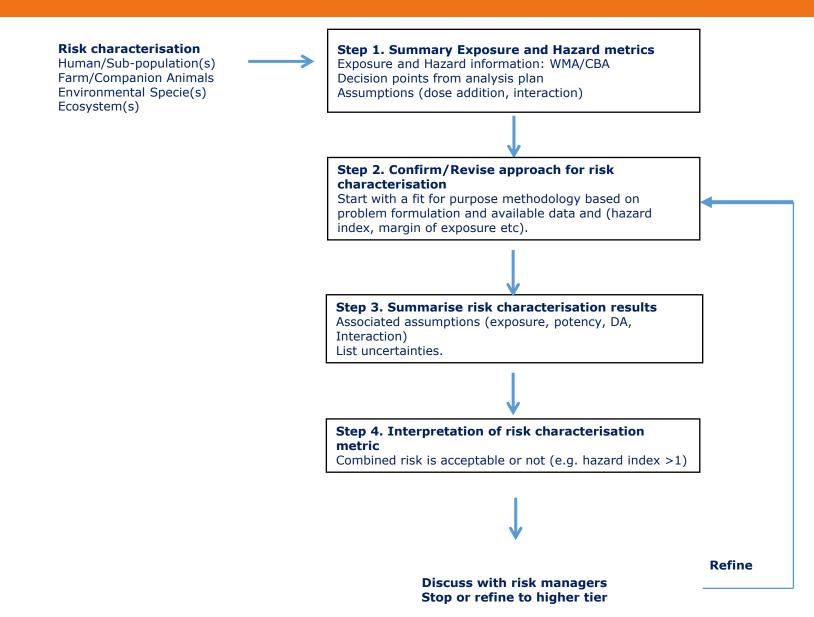
Tiering Principles

Relationships between tiers, data availability, uncertainty, accuracy and outcome of a risk assessment. From: Solomon et al. (2006).

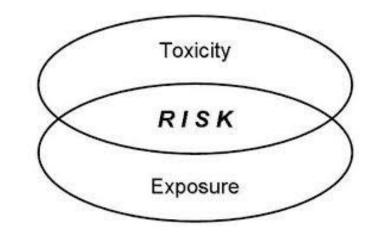




EXPOSURE ASSESSMENT


Note: Occurrence and consumption tiers often do not match. The resulting exposure tier will be determined by the available data including for the occurrence of different components of a mixture

REPORTING SUMMARY


Problem formulation	Description of the mixture	Simple or complex mixture, Composition, Data availability for components or whole mixture
	Conceptual Model	Question/Terms of reference, Source, exposure pathways, Species/sub-population, Regulatory framework, Other ?
	Methodology	Overview of available data Whole mixture or component based approach or a mixture of the two. Assessment group, Other ?
	Analysis Plan	
Exposure assessment	Characterisation Whole Mixture Components Assessment group	
	Summary Occurrence (concentration) data	
	Summary exposure	Assumptions, Exposure metrics
Hazard Assessment	Mixture Composition WMA/CBA	
	Reference points Reference values	
	Summary Hazard metrics	Assumptions combined toxicity (DA, RA), hazard metrics
		Uncertainties
Risk Characterisation	Summary Exposure and hazard metrics	
	Risk characterisation Approach	
	Summary Risk Metrics	Associated Assumptions (DA, RA, interactions), Risk metrics Uncertainties

Relevant questions: Current examples@EFSA

Human Health Pesticides Contaminants

Animal Health Essential oils in feed

Ecological Risk Assessment MUST-B : Multiple Stressors in bees

IMPLEMENTATION OF MIXTOX IN PRACTICE

TECHNICAL REPORT

APPROVED: 10 December 2019

doi:10.2903/sp.efsa.2020.EN-1759

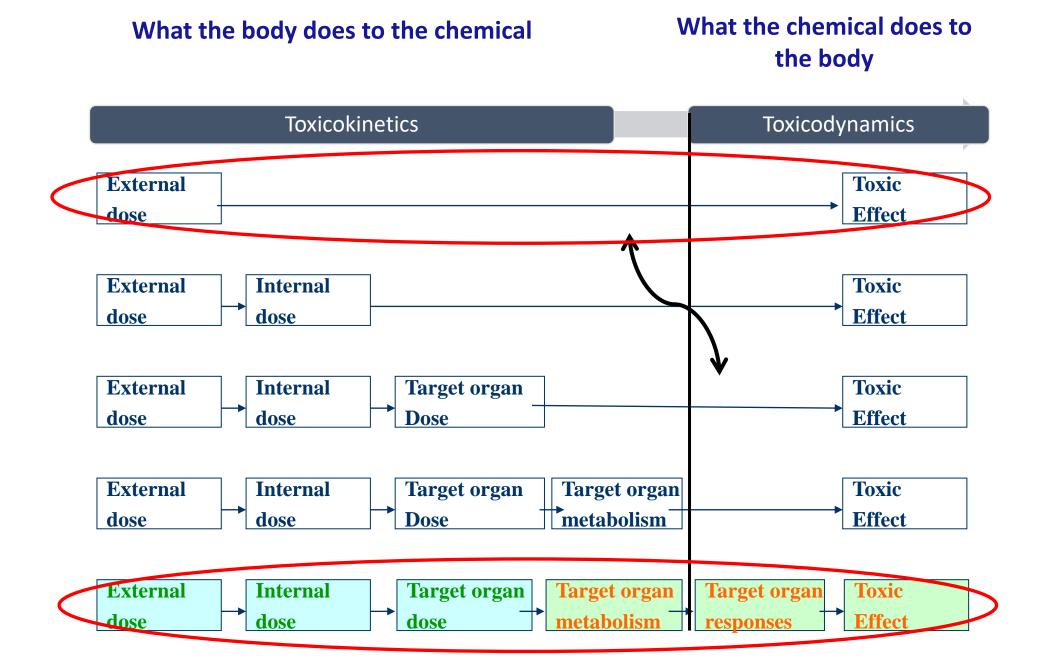
Human risk assessment of multiple chemicals using component-based approaches: A horizontal perspective

European Food Safety Authority (EFSA),

Jean Lou CM Dorne, Amélie Crépet, Jan Dirk te Biesebeek, Kyriaki Machera, and Christer Hogstrand

APPROVED: 10 December 2019 doi:10.2903/sp.efsa.2020.EN-1760

Animal Health Risk assessment of multiple chemicals in essential oils for farm animals


European Food Safety Authority (EFSA), Jean Lou CM Dorne, Paola Manini and Christer Hogstrand

VALUTAZIONE DEGLI EFFETTI COMBINATI DELLE MISCELE DI SOSTANZE CHIMICHE

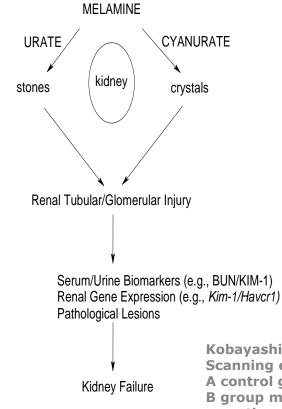
Digital Workshop 25 Giugno 2020

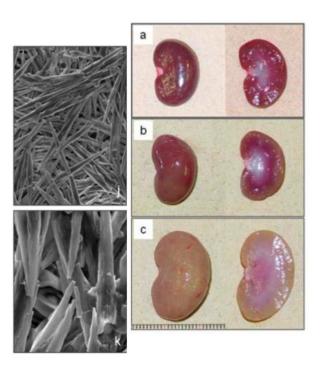
Check

EXAMPLES AND TOXICOLOGICAL TOOLS

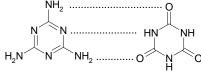
Food Fraud: The melamine case study

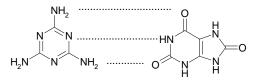
MELAMINE: WHAT HAPPENED ?


- Melamine acutely toxic: **complex with uric acid** kidney toxicity
- Used for manufacture of plastics/ approved as food contact material-Deliberate addition to food not allowed. Used illegally to increase apparent content of protein.
- 2007 US crisis: pet food imported from China adulterated with scrap melamine (melamine/cyanuric acid) 1000s of pets/animals with severe health effects.
- September 2008: app. 500,000 cases of infants/children hospitalised with kidney stones, reported deaths from adulterated milk powder used for infant formula.
- 2009-2010 RA: WHO and EFSA Tolerable Daily Intake 0.2 mg/kg b.w per day melamine alone for humans



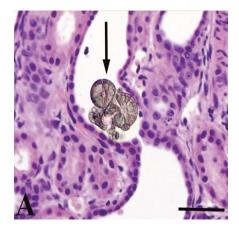
Mode of action of Melamine-Cyanuric Acid toxicity


Melamine and cyanuric acid Synergistic toxicity : Covalent complex



Kobayashi et al. (2010) Scanning electron microscope x 7000 and x 14000 A control group day 7 B group m 24 mg/kg/day at 7 reddish brown, smooth surfaces C small irregularities on surface yellow - significant

C small irregularities on surface yellow - significant changes in weight



Melamine Cyanuric Acid

Melamine

Uric Acid

Toxicology and Applied Pharmacology 370 (2019) 184–195

Contents lists available at ScienceDirect

Toxicology and Applied Pharmacology

journal homepage: www.elsevier.com/locate/taap

Investigating the interaction between melamine and cyanuric acid using a Physiologically-Based Toxicokinetic model in rainbow trout

Cleo Tebby^a, Céline Brochot^a, Jean-Lou Dorne^b, Rémy Beaudouin^{a,c,*}

^a Institut National de l'Environnement Industriel et des Risques (INERIS), Models for Ecotoxicology and Toxicology Unit, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France

^b European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126 Parma, Italy ^c Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France

VALUTAZIONE DEGLI EFFETTI COMBINATI DELLE MISCELE DI SOSTANZE CHIMICHE

Digital Workshop

25 Giugno 2020

Archives of Toxicology https://doi.org/10.1007/s00204-018-2325-6

TOXICOGENOMICS

The Yin–Yang of CYP3A4: a Bayesian meta-analysis to quantify inhibition and induction of CYP3A4 metabolism in humans and refine uncertainty factors for mixture risk assessment

Nadia Quignot¹ · Witold Wiecek² · Billy Amzal¹ · Jean-Lou Dorne³

VALUTAZIONE DEGLI EFFETTI COMBINATI DELLE MISCELE DI SOSTANZE CHIMICHE

Digital Workshop

25 Giugno 2020

MYCOTOXIN MIXTURES AND CLIMATE CHANGE – 2017-2019

EXTERNAL SCIENTIFIC REPORT		Output University balance	Consplo Nazionale delle Roeche Istiluto per la BisEconania	

APPROVED: 4 December 2019 doi: 10.2903/sp.efsa.2020.EN-1757

Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach:

MYCHIF

Author(s)

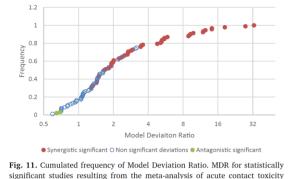
Paola Battilani, Roberta Palumbo, Paola Giorni, Chiara Dall'Asta, Luca Dellafiora, Athanasios Gkrillas, Piero Toscano, Alfonso Crisci, Carlo Brera, Barbara De Santis, Rosaria Rosanna Cammarano, Maurella Della Seta, Katrina Campbell, Chris Elliot, Armando Venancio, Nelson Lima, Ana Gonçalves, Chloe Terciolo, Isabelle P Oswald

- Environmental variables and their impact on mycotoxin production
- Influence of climate change, temperature, season, pests, nutrient Comparative toxicity and kinetics in farm animals and humans
- Occurrence data in Cereals (Maize, rice, wheat etc...)
- Risk characterisation using Relative potency factors and Margin of exposure

VALUTAZIONE DEGLI EFFETTI COMBINATI DELLE MISCELE DI SOSTANZE CHIMICHE

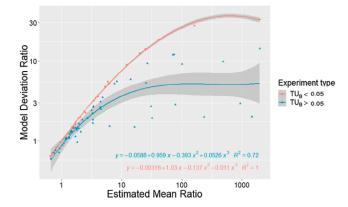
Digital Workshop

25 Giugno 2020



Contents lists available at ScienceDirect

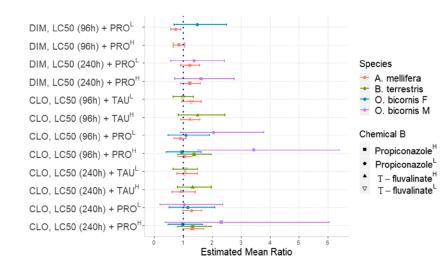
Environment International


Check for updates **Acute contact Toxicity**

studies on honey bees (Iwasa et al., 2004; Johnson et al., 2013, 2006, 2009; Ellis et al., 1997). MDR > 1.25 represents "synergistic" interactions.

0.83 < MDR < 1.25 represents "additive" effects; MDR < 0.83 represents

"antagonistic" interactions.

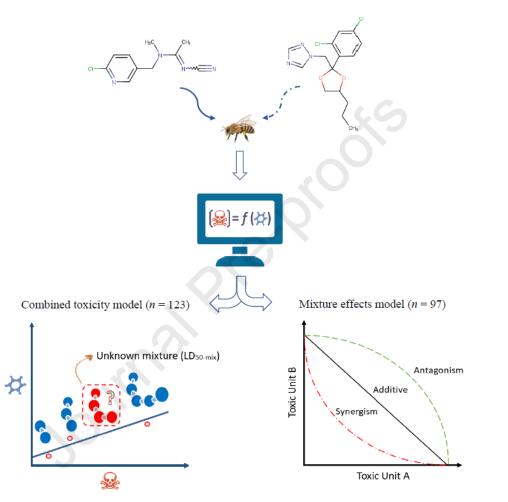


journal homepage: www.elsevier.com/locate/envint

Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment

Edoardo Carnesecchi^{a,b}, Claus Svendsen^c, Stefano Lasagni^d, Audrey Grech^e, Nadia Quignot^f, Billy Amzal^f, Cosimo Toma^b, Simone Tosi^g, Agnes Rortais^h, Jose Cortinas-Abrahantes^h, Ettore Capriⁱ, Nynke Kramer^a, Emilio Benfenati^b, David Spurgeon^c, Gilles Guillot^j, Jean Lou Christian Michel Dorne^{h,k,*}

Chronic oral Toxicity


Interactions/Synergism in bees

Mostly due to inhibition of CYP metabolism

- From limited data (oral) magnitude interactions acute contact toxicity > acute oral/chronic oral
- Few acute oral and chronic oral tox data
- Addressing (co)-exposure dimension
- Mortality as common metrics for risk characterisation (starting point)
 23

QSAR models predicting the nature of combined toxicity and binary mixture toxicity

(Acute contact toxicity)

Journal Pre-proofs

Predicting acute contact toxicity of organic binary mixtures in honey bees (A. mellifered

through innovative QSAR models

Edoardo Carnesecchi a,b,*, Andrey A. Toropov a, Alla P. Toropova a, Nynke Kramer b,

Claus Svendsen^c, Jean Lou Dorne^d, Emilio Benfenati^a

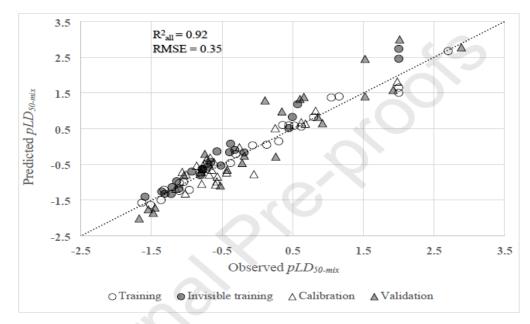


Figure 3. Observed versus predicted log $[1/LD_{50-mix}]$ of binary mixtures for the regression-based model (Approach B), split 1 "best split". R^2_{all} (determination coefficient) and RMSE (root mean squared error) are provided for all compounds (i.e. compounds from training, invisible training, calibration, and validation sets).

Other models to combine toxicity data for RA

Response addition

- ✓ Not used very often in human RA since evidence limited
- \checkmark Sometimes used in ecological RA for mortality data
- \checkmark Dose addition is the consensus model around the world

Interactions

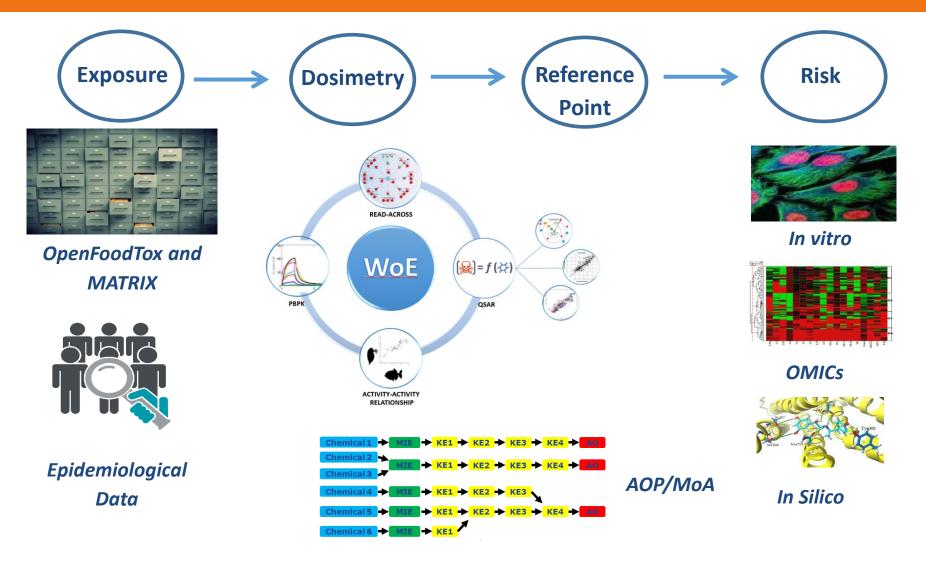
- ✓ MIXTOX GD set basis for assessing TK/TD interactions
- Synergy: very limited evidence in human RA : low levels in food. Evidence in eco RA for mortality data (bees) most often TK (inhibition metabolism)
- ✓ Models for binary mixtures
- Antagonism ? Lots of evidence from food detoxifying chemicals (e.g. cabbage, garlic etc.)
 Risk Benefit ? NDA Remit (novel food/health claims)

Tools for TK TD MODELLING

• Models in development at EFSA

> Generic models for humans, farm animals and Eco submitted to OECD PBPK GD

- Platform under construction for models: TKplate (2020)
- Link with NOAEL/BMDL based on internal dose
- Future link AOP/MoA: in vitro in vivo extrapolation
- > TKTD Modelling for mortality in ecotox (DEB)
- Further models + update launch June 2020
- **Refining mixture RA using internal dose** for each compound and applying dose addition is feasible
- EUROMIX Toolbox: set of useful models but tox only liver and neurodevelopmental



MIXTOX2 : Scientific criteria for grouping chemicals

- Focus on Human Health
- On going mandate on scientific criteria for setting assessment groups (due Dec 2020 for public consultation)
- Consider
- Toxicological effects (MoA/AOP/Target organ etc..)
- Mechanistic data AOP MoA (human relevance)
- **TK aspects** (persistence, correct for body burden, CONTAM)
- Exposure and risk-based tools for prioritisation
- WoE Methodology
- International activities (WHO, OECD, US-EPA etc)

Conclusion : Integrating State Of The Art Methods And Data Streams

VALUTAZIONE DEGLI EFFETTI COMBINATI DELLE MISCELE DI SOSTANZE CHIMICHE

Digital Workshop 25 Giugno 2020

THANK YOU!

Subscribe to

www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

Engage with careers

www.efsa.europa.eu/en/engage/careers

Follow us on Twitter

@efsa_eu
@plants_efsa
@methods_efsa

Do you have questions? Jean-Lou.DORNE@efsa.europa.eu